Section 16.1

Vector Fields

Vector Field Basics
Picturing vector Fields
Divergence, Curl, and the Del Operator
Divergence
Curl, the Intuition
Curl, the Definition
The Del Operator
Examples
Conservative Vector Fields and their Potential Functions
Definition of a Scalar Potential for a Vector Field
Examples, Finding the Scalar Potentials

1 Vector Field Basics

Vector Fields

Goal: Describe physical phenomena such as current, wind direction, electric and magnetic fields that vary over space.

Definition: Vector Fields

A vector field in \mathbb{R}^{n} is a function $\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
That is, \vec{F} assigns to each point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} a vector

$$
\vec{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\langle F_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, F_{n}\left(x_{1}, \ldots, x_{n}\right)\right\rangle
$$

where F_{1}, \ldots, F_{n} are scalar functions (the component functions of \vec{F}).

Hurricane Julia
10/09/2022
en.wikipedia.org

Picturing Vector Fields

Example 1, Part a: Sketch the vector field \vec{E} in \mathbb{R}^{2} defined by

$$
\vec{E}(x, y)=\langle-y, x\rangle
$$

(x, y)	$\overrightarrow{\mathrm{E}}(x, y)$	(x, y)	$\overrightarrow{\mathrm{E}}(x, y)$
$(1,0)$	$\langle 0,1\rangle$	$(0,-3)$	$\langle 3,0\rangle$
$(3,0)$	$\langle 0,3\rangle$	$(0,-1)$	$\langle 1,0\rangle$
$(2,2)$	$\langle-2,2\rangle$	$(-1,0)$	$\langle 0,-1\rangle$
$(0,3)$	$\langle-3,0\rangle$	$(-3,0)$	$\langle 0,-3\rangle$
$(0,1)$	$\langle-1,0\rangle$	$(-2,2)$	$\langle-2,-2\rangle$
$(2,-2)$	$\langle 2,2\rangle$	$(-2,-2)$	$\langle 2,-2\rangle$

(As you can see, drawing vector fields by hand is a major hassle.)

Picturing Vector Fields

Example 1, Part b: Here are three more vector fields in \mathbb{R}^{2}.

$$
\overrightarrow{\mathrm{F}}(x, y)=x \overrightarrow{\mathrm{i}}+y \vec{j} .
$$

$$
\overrightarrow{\mathrm{G}}(x, y)=y \overrightarrow{\mathrm{i}}+x \overrightarrow{\mathrm{j}}
$$

$$
\overrightarrow{\mathrm{H}}(x, y)=y \vec{i}-x \vec{j}
$$

Note: $\overrightarrow{\mathrm{F}}$ is a radial vector field: $\vec{F}(P)$ depends only on the distance from P to the origin O, and is parallel to $\overrightarrow{O P}$.

2 Divergence, Curl, and the Del Operator

Divergence of a Vector Field

The divergence of a vector field $\overrightarrow{\mathrm{F}}$ at a point P measures how much $\overrightarrow{\mathrm{F}}$ disperses "stuff" near P.

Positive divergence (disperses stuff)

Negative divergence (attracts stuff)

Zero divergence ("incompressible")

Positive divergence

The divergence of a vector field $\vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is defined as

$$
\operatorname{div}(\vec{F})=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} .
$$

Notice that $\operatorname{div}(\vec{F})$ is a scalar-valued function.

Curl of a Vector Field

The curl of a vector field \vec{F} measures how \vec{F} causes objects to rotate.
Thought experiment: The current in a river is stronger near the banks than in the middle. A boat is anchored near the right bank. What happens to the boat? It rotates counterclockwise.

Let \vec{F} be the vector field describing the current. Rotation occurs because the \vec{j} component of \vec{F} gets bigger to the right. That is,

$$
\frac{\partial F_{2}}{\partial x}(\vec{a})>0
$$

- If $\frac{\partial F_{2}}{\partial x}(\vec{a})<0$ then \vec{F} tends to rotate objects clockwise.
- The axis of rotation is parallel to the z-axis.
- The value of $\frac{\partial F_{1}}{\partial y}(\vec{a})$ also causes rotation (counterclockwise if negative, clockwise if positive).

Curl of a Vector Field

- The tendency of a vector field $\overrightarrow{\mathrm{F}}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ to rotate objects counterclockwise around the z-axis is measured by the scalar quantity

$$
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} .
$$

- Correspondingly, rotation about the x - and y-axes are measured by the scalars

$$
\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z} \quad \text { and } \quad \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} .
$$

- Making these scalar functions into the components of a vector lets us measure the rotational effect of \vec{F} at all points.

Curl of a Vector Field

The curl of a vector field $\overrightarrow{\mathrm{F}}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is defined as

$$
\operatorname{curl}(\vec{F})=\left\langle\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \quad \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \quad \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right\rangle
$$

Notice that $\operatorname{curl}(\vec{F})$ is a vector-valued function (that is, it is a vector field).

The direction of curl $(\vec{F})(P)$ is the axis of rotation, as determined by the right-hand rule, and the magnitude of curl $(\vec{F})(P)$ is the speed of rotation.

If $\operatorname{curl}(\vec{F})=\overrightarrow{0}$ then \vec{F} is called irrotational.

$\operatorname{curl} \mathbf{F}(P)$

The Del Operator

The del or nabla operator ${ }^{1} \nabla$ is defined by $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$.
Applying ∇ to a scalar function f gives its gradient:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

The curl and divergence of a vector field can also be written in terms of ∇ :

$$
\begin{aligned}
& \operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle F_{1}, F_{2}, F_{3}\right\rangle=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& \operatorname{curl}(\vec{F})=\nabla \times \vec{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \times\left\langle F_{1}, F_{2}, F_{3}\right\rangle=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
\end{aligned}
$$

${ }^{1}$ An operator is like a function on functions - it transforms one function into another.

Calculating Divergence and Curl

Example 2: Calculate the divergence and curl of

$$
\vec{F}(x, y, z)=\left\langle x z, x y z,-y^{2}\right\rangle .
$$

Solution:

$$
\begin{aligned}
& \operatorname{div}(\vec{F})(x, y, z)=\frac{\partial}{\partial x}(x z)+\frac{\partial}{\partial y}(x y z)+\frac{\partial}{\partial z}\left(-y^{2}\right)=z+x z \\
& \operatorname{curl}(\overrightarrow{\mathrm{~F}})(x, y, z)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x z & x y z & -y^{2}
\end{array}\right|=\langle-2 y-x y, x, y z\rangle
\end{aligned}
$$

Calculating Divergence and Curl

Example 3: Calculate $\nabla \cdot \vec{F}$ and $\nabla \times \overrightarrow{\mathrm{F}}$ for the 2-dimensional vector field

$$
\vec{F}(x, y)=\left\langle y^{2}, x^{2}\right\rangle .
$$

Solution: This field turns out to be incompressible, because

$$
(\nabla \cdot \vec{F})(x, y)=\frac{\partial}{\partial x}\left(y^{2}\right)+\frac{\partial}{\partial y}\left(x^{2}\right)=0 .
$$

Cross products are defined only in \mathbb{R}^{3}. To calculate curl we must write

$$
\vec{F}(x, y)=\left\langle y^{2}, x^{2}, 0\right\rangle
$$

so that

$$
(\nabla \times \vec{F})(x, y)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} & x^{2} & 0
\end{array}\right|=\langle 0,0,2 x-2 y\rangle .
$$

Fact: The curl of a 2-dimensional vector field is always parallel to \vec{k}.

3 Conservative Vector Fields and their Potential Functions

Conservative Vector Fields

Let $f(x, y, z)$ be a scalar-valued function. Its gradient is a vector field:

$$
\overrightarrow{\mathrm{F}}=\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

- The function f is called a (scalar) potential function for \vec{F}.
- A vector field is called conservative if it has a potential function,

Conservative fields occur naturally in physics, as force fields in which energy is conserved.

If $\overrightarrow{\mathrm{F}}=\nabla f$ is a conservative vector field, then at all points P the vector $\vec{F}(P)$ is orthogonal to the level curve of the potential function f.

Facts about Potentials

A domain \mathcal{R} is called connected if any two points P, Q in \mathcal{R} can be connected by a path that lies in \mathcal{R}.

Theorem

If \vec{F} is conservative on an open connected domain \mathcal{R}, then any two potential functions of \vec{F} differ by a constant.

- This fact makes sense if you think of ∇ as differentiation and a potential function as an antiderivative.
- It is the higher-dimensional analogue of the statement that any two antiderivatives of a function $f:[a, b] \rightarrow \mathbb{R}$ differ by a constant.

Conservative Vector Fields Have Zero Curl

Theorem

If \vec{F} is a conservative vector field in \mathbb{R}^{2} or \mathbb{R}^{3}, then $\operatorname{curl}(\vec{F})=\overrightarrow{0}$.
That is, all conservative vector fields are irrotational.
Proof: Let f be a potential function for $\overrightarrow{\mathrm{F}}$, that is, $\nabla f=\overrightarrow{\mathrm{F}}$. Then,

$$
\begin{aligned}
\operatorname{curl}(\overrightarrow{\mathrm{F}}) & =\operatorname{curl}(\nabla f)=\nabla \times \nabla f=\left|\begin{array}{ccc}
\overrightarrow{\mathrm{i}} & \overrightarrow{\mathrm{j}} & \overrightarrow{\mathrm{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right| \\
& =\left\langle f_{z y}-f_{y z}, f_{x z}-f_{z x}, f_{y x}-f_{x y}\right\rangle \\
& =\overrightarrow{0}, \quad \text { by Clairaut's Theorem. }
\end{aligned}
$$

Food For Thought: Are all irrotational fields necessarily conservative?

Finding Scalar Potentials

The process for finding scalar potential functions is essentially antidifferentiation, but with a twist.

For $\vec{F}(x, y)=\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle$:
(3) Find the indefinite integrals $\int F_{1}(x, y) d x$ and $\int F_{2}(x, y) d y$.

- The constants of integration are $c_{1}(y)$ and $c_{2}(x)$ respectively (instead of the usual " $+C$ "), because if $\frac{\partial}{\partial x}(f(x, y))=F_{1}$ then $\frac{\partial}{\partial x}\left(f(x, y)+c_{1}(y)\right)=F_{1}$ as well.
(2) "Match up the pieces" to determine $f(x, y)$.

For $\vec{F}(x, y, z)=\left\langle F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z)\right\rangle$:
(1) Find the indefinite integrals $\int F_{1} d x, \int F_{2} d y$, and $\int F_{3} d z$.

Constants of integration: $c_{1}(y, z), c_{2}(x, z), c_{3}(x, y)$.
(c) "Match up the pieces" to determine $f(x, y, z)$.

Finding Scalar Potentials

Example 4: Find a scalar potential function for the vector field

$$
\vec{F}(x, y)=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle
$$

Solution:

$$
\begin{aligned}
f(x, y) & =\int 3+2 x y d x & f(x, y) & =\int x^{2}-3 y^{2} d y \\
& =3 x+x^{2} y+c_{1}(y) & & =x^{2} y-y^{3}+c_{2}(x)
\end{aligned}
$$

Match up the pieces:

$$
f(x, y)=x^{2} y+3 x-y^{3}+C .
$$

Finding Scalar Potentials (3-dimentional Example)

Example 5: Find a scalar potential function for the vector field

$$
\vec{F}(x, y, z)=\left\langle y^{2}+e^{z}, 2 x y+\sec ^{2}(y), x e^{z}\right\rangle .
$$

Solution: Antidifferentiate each of the component functions:

$$
\begin{array}{l|l|l}
\int y^{2}+e^{z} d x \\
=x y^{2}+x e^{z}+c_{1}(y, z) & \begin{array}{l}
\int 2 x y+\sec ^{2}(y) d y \\
=x y^{2}+\underbrace{\tan (y)}_{c_{1}(y, z), c_{3}(x, y)}
\end{array}+c_{2}(x, z) & \int x e^{z} d z \\
=x e^{z}+c_{3}(x, y)
\end{array}
$$

Match up the pieces to get the answer:

$$
f(x, y, z)=x y^{2}+x e^{z}+\tan (y)+C .
$$

Another Potential 3-Dimensional Example (Optional)

Example 6: Show that $r=\sqrt{x^{2}+y^{2}+z^{2}}$ is a potential function for the unit radial vector field

$$
\vec{e}_{r}=\left\langle\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right\rangle .
$$

Solution: $\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r} \quad \frac{\partial r}{\partial y}=\frac{y}{r} \quad \frac{\partial r}{\partial z}=\frac{z}{r}$
Radial, inverse-squared vector fields are conservative since

$$
\nabla\left(\frac{-1}{r}\right)=\frac{\vec{e}_{r}}{r^{2}} \quad \overrightarrow{\mathrm{~F}}_{\text {gravity }}=\left(\frac{-G m M}{r^{2}}\right) \vec{e}_{r}
$$

Gravitational force exerted by a point mass m on a point mass M is described by a radial, inverse-squared vector field. $\frac{G m M}{r}$ is a scalar potential for $\vec{F}_{\text {gravity }}$.

