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1 Vector Field Basics



Vector Fields
Goal: Describe physical phenomena such as current, wind direction,
electric and magnetic fields that vary over space.

Definition: Vector Fields
A vector field in Rn is a function F⃗ : Rn → Rn.

That is, F⃗ assigns to each point (x1, x2, . . . , xn) in Rn a vector

F⃗(x1, x2, . . . , xn) = ⟨F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)⟩

where F1, . . . ,Fn are scalar functions (the component functions of F⃗).
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Picturing Vector Fields
Example 1, Part a: Sketch the vector field E⃗ in R2 defined by

E⃗(x , y) = ⟨−y , x⟩

x

y(x,y) E⃗(x , y) (x,y) E⃗(x , y)

(1, 0) ⟨0, 1⟩

(3, 0) ⟨0, 3⟩

(2, 2) ⟨−2, 2⟩

(0, 3) ⟨−3, 0⟩

(0, 1) ⟨−1, 0⟩

(2,−2) ⟨2, 2⟩

(0,−3) ⟨3, 0⟩

(0,−1) ⟨1, 0⟩

(−1, 0) ⟨0,−1⟩

(−3, 0) ⟨0,−3⟩

(−2, 2) ⟨−2,−2⟩

(−2,−2) ⟨2,−2⟩

E⃗(1, 0)

E⃗(2, 2)
E⃗(0, 3)

(As you can see, drawing vector fields by hand is a major hassle.)



Picturing Vector Fields

Example 1, Part b: Here are three more vector fields in R2.

F⃗(x , y) = x⃗ i + y⃗ j.
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G⃗(x , y) = y⃗ i + x⃗ j
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y
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H⃗(x , y) = y⃗ i − x⃗ j
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y
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Note: F⃗ is a radial vector field: F⃗(P) depends only on the distance from
P to the origin O, and is parallel to

−→
OP.



2 Divergence, Curl, and the Del Operator



Divergence of a Vector Field

The divergence of a vector field F⃗ at a point P measures how much F⃗
disperses “stuff” near P.

Positive divergence

(disperses stuff)

Negative divergence

(attracts stuff)

Zero divergence

(“incompressible”)

Positive divergence

The divergence of a vector field F⃗ = ⟨F1,F2,F3⟩ is defined as

div(F⃗) =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Notice that div(F⃗) is a scalar-valued function.



Curl of a Vector Field
The curl of a vector field F⃗ measures how F⃗ causes objects to rotate.

Thought experiment: The current in a
river is stronger near the banks than in the
middle. A boat is anchored near the right
bank. What happens to the boat? It
rotates counterclockwise.

x

y

Let F⃗ be the vector field describing the current. Rotation occurs because
the j⃗ component of F⃗ gets bigger to the right. That is,

∂F2

∂x
(⃗a) > 0.

If ∂F2
∂x (⃗a) < 0 then F⃗ tends to rotate objects clockwise.

The axis of rotation is parallel to the z-axis.
The value of ∂F1

∂y (⃗a) also causes rotation (counterclockwise if
negative, clockwise if positive). Link

https://www.geogebra.org/m/zabqdgr6


Curl of a Vector Field

The tendency of a vector field F⃗ = ⟨F1,F2,F3⟩ to rotate objects
counterclockwise around the z-axis is measured by the scalar
quantity

∂F2

∂x
− ∂F1

∂y
.

Correspondingly, rotation about the x- and y -axes are measured by
the scalars

∂F3

∂y
− ∂F2

∂z
and

∂F1

∂z
− ∂F3

∂x
.

Making these scalar functions into the components of a vector lets
us measure the rotational effect of F⃗ at all points.



Curl of a Vector Field

The curl of a vector field F⃗ = ⟨F1,F2,F3⟩ is defined as

curl(F⃗) =
〈
∂F3

∂y
− ∂F2

∂z
,

∂F1

∂z
− ∂F3

∂x
,

∂F2

∂x
− ∂F1

∂y

〉

Notice that curl(F⃗) is a vector-valued
function (that is, it is a vector field).

The direction of curl(F⃗)(P) is the axis of
rotation, as determined by the right-hand
rule, and the magnitude of curl(F⃗)(P) is
the speed of rotation.

If curl(F⃗) = 0⃗ then F⃗ is called irrotational.



The Del Operator

The del or nabla operator1 ∇ is defined by ∇ =

〈
∂

∂x
,

∂

∂y
,

∂

∂z

〉
.

Applying ∇ to a scalar function f gives its gradient:

∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
The curl and divergence of a vector field can also be written in terms of
∇:

div(F⃗) = ∇ · F⃗ =

〈
∂

∂x
,

∂

∂y
,

∂

∂z

〉
· ⟨F1,F2,F3⟩ =

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

curl(F⃗) = ∇× F⃗ =

〈
∂

∂x
,

∂

∂y
,

∂

∂z

〉
× ⟨F1,F2,F3⟩ =

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣
1An operator is like a function on functions — it transforms one function into another.



Calculating Divergence and Curl

Example 2: Calculate the divergence and curl of

F⃗(x , y , z) =
〈
xz , xyz , −y2〉 .

Solution:

div(F⃗)(x , y , z) =
∂

∂x
(xz) +

∂

∂y
(xyz) +

∂

∂z
(−y2) = z + xz

curl(F⃗)(x , y , z) =

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

xz xyz −y2

∣∣∣∣∣∣∣∣ = ⟨−2y − xy , x , yz⟩



Calculating Divergence and Curl
Example 3: Calculate ∇ · F⃗ and ∇× F⃗ for the 2-dimensional vector field

F⃗(x , y) =
〈
y2, x2〉 .

Solution: This field turns out to be incompressible, because

(∇ · F⃗)(x , y) = ∂

∂x
(y2) +

∂

∂y
(x2) = 0.

Cross products are defined only in R3. To calculate curl we must write

F⃗(x , y) =
〈
y2, x2, 0

〉
so that

(∇× F⃗)(x , y) =

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

y2 x2 0

∣∣∣∣∣∣∣∣ = ⟨0, 0, 2x − 2y⟩ .

Fact: The curl of a 2-dimensional vector field is always parallel to k⃗.



3 Conservative Vector Fields and their Potential
Functions



Conservative Vector Fields

Let f (x , y , z) be a scalar-valued function. Its gradient is a vector field:

F⃗ = ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
The function f is called a (scalar) potential function for F⃗.
A vector field is called conservative if it has a potential function,

x

y

Conservative fields occur naturally in
physics, as force fields in which energy is
conserved.

If F⃗ = ∇f is a conservative vector field,
then at all points P the vector F⃗(P) is
orthogonal to the level curve of the
potential function f .



Facts about Potentials

P Q

A domain R is called connected if any two points
P,Q in R can be connected by a path that lies in R.

Theorem
If F⃗ is conservative on an open connected domain R, then any two
potential functions of F⃗ differ by a constant.

This fact makes sense if you think of ∇ as differentiation and a
potential function as an antiderivative.
It is the higher-dimensional analogue of the statement that any two
antiderivatives of a function f : [a, b] → R differ by a constant.



Conservative Vector Fields Have Zero Curl

Theorem
If F⃗ is a conservative vector field in R2 or R3, then curl(F⃗) = 0⃗.

That is, all conservative vector fields are irrotational.

Proof: Let f be a potential function for F⃗, that is, ∇f = F⃗. Then,

curl(F⃗) = curl(∇f ) = ∇×∇f =

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∣∣
= ⟨fzy − fyz , fxz − fzx , fyx − fxy ⟩

= 0⃗, by Clairaut’s Theorem.

Food For Thought: Are all irrotational fields necessarily conservative?



Finding Scalar Potentials

The process for finding scalar potential functions is essentially
antidifferentiation, but with a twist.

For F⃗(x, y) = ⟨F1(x, y), F2(x, y)⟩:

1 Find the indefinite integrals
´
F1(x , y) dx and

´
F2(x , y) dy .

The constants of integration are c1(y) and c2(x) respectively
(instead of the usual “+C ”), because if ∂

∂x
(f (x , y)) = F1 then

∂
∂x

(f (x , y) + c1(y)) = F1 as well.
2 “Match up the pieces” to determine f (x , y).

For F⃗(x, y , z) = ⟨F1(x, y , z), F2(x, y , z), F3(x, y , z)⟩:

1 Find the indefinite integrals
´
F1 dx ,

´
F2 dy , and

´
F3 dz .

Constants of integration: c1(y , z), c2(x , z), c3(x , y).
2 “Match up the pieces” to determine f (x , y , z).



Finding Scalar Potentials

Example 4: Find a scalar potential function for the vector field

F⃗(x , y) =
〈
3 + 2xy , x2 − 3y2〉 .

Solution:

f (x , y) =

ˆ
3 + 2xy dx f (x , y)=

ˆ
x2 − 3y2 dy

= 3x + x2y + c1(y) = x2y − y3 + c2(x)

Match up the pieces:

f (x , y) = x2y + 3x − y3 + C .



Finding Scalar Potentials (3-dimentional Example)

Example 5: Find a scalar potential function for the vector field

F⃗(x , y , z) =
〈
y2 + ez , 2xy + sec2(y), xez

〉
.

Solution: Antidifferentiate each of the component functions:

ˆ
y2 + ez dx

ˆ
2xy + sec2(y) dy

ˆ
xez dz

= xy2 + xez + c1(y , z) = xy2 + tan(y)︸ ︷︷ ︸
c1(y, z), c3(x, y)

+ c2(x , z) = xez + c3(x , y)

Match up the pieces to get the answer:

f (x , y , z) = xy2 + xez + tan(y) + C .



Another Potential 3-Dimensional Example (Optional)

Example 6: Show that r =
√
x2 + y2 + z2 is a

potential function for the unit radial vector field

e⃗r =
〈x
r
,
y

r
,
z

r

〉
. x y

z

Solution:
∂r

∂x
=

x√
x2 + y2 + z2

=
x

r

∂r

∂y
=

y

r

∂r

∂z
=

z

r

Radial, inverse-squared vector fields are conservative since

∇
(
−1
r

)
=

e⃗r
r2 F⃗gravity =

(
−GmM

r2

)
e⃗r

Gravitational force exerted by a point mass m on a point mass M is

described by a radial, inverse-squared vector field.
GmM

r
is a scalar

potential for F⃗gravity .
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