Section 16.1

Vector Fields

Vector Field Basics Picturing vector Fields

Divergence, Curl, and the Del Operator

Divergence Curl, the Intuition Curl, the Definition The Del Operator Examples

loseph Phillip Brenna Jila Niknejad

Conservative Vector Fields and their Potential Functions Definition of a Scalar Potential for a Vector Field Examples, Finding the Scalar Potentials

1 Vector Field Basics

Joseph Phillip Brennan Jila Niknejad

Vector Fields

Goal: Describe physical phenomena such as current, wind direction, electric and magnetic fields that vary over space.

Definition: Vector Fields

A vector field in \mathbb{R}^n is a function $\vec{\mathsf{F}}: \mathbb{R}^n \to \mathbb{R}^n$.

That is, $\vec{\mathsf{F}}$ assigns to each point (x_1, x_2, \ldots, x_n) in \mathbb{R}^n a vector

$$\vec{\mathsf{F}}(x_1, x_2, \ldots, x_n) = \langle F_1(x_1, \ldots, x_n), \ldots, F_n(x_1, \ldots, x_n) \rangle$$

where F_1, \ldots, F_n are scalar functions (the **component functions** of \vec{F}).

Joseph Phillip Brennan Jila Niknejad

Hurricane Julia 10/09/2022 en.wikipedia.org

Picturing Vector Fields

Example 1, Part a: Sketch the vector field \vec{E} in \mathbb{R}^2 defined by

$$\vec{\mathsf{E}}(x,y) = \langle -y, x \rangle$$

(As you can see, drawing vector fields by hand is a major hassle.)

Picturing Vector Fields

Example 1, Part b: Here are three more vector fields in \mathbb{R}^2 .

Note: \vec{F} is a **radial vector field**: $\vec{F}(P)$ depends only on the distance from P to the origin O, and is parallel to \overrightarrow{OP} .

2 Divergence, Curl, and the Del Operator

by Joseph Phillip Brennan Jila Niknejad

Divergence of a Vector Field

The **divergence** of a vector field \vec{F} at a point *P* measures how much \vec{F} disperses "stuff" near *P*.

The **divergence** of a vector field $\vec{F} = \langle F_1, F_2, F_3 \rangle$ is defined as

$$\operatorname{div}(\vec{\mathsf{F}}) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

Notice that $div(\vec{F})$ is a scalar-valued function.

Curl of a Vector Field

The curl of a vector field \vec{F} measures how \vec{F} causes objects to rotate.

Thought experiment: The current in a river is stronger near the banks than in the middle. A boat is anchored near the right bank. What happens to the boat? It rotates counterclockwise.

Let \vec{F} be the vector field describing the current. Rotation occurs because the \vec{j} component of \vec{F} gets bigger to the right. That is,

$$\frac{\partial F_2}{\partial x}(\vec{a}) > 0.$$

- If $\frac{\partial F_2}{\partial x}(\vec{a}) < 0$ then \vec{F} tends to rotate objects clockwise.
- The axis of rotation is parallel to the z-axis.
- The value of \frac{\partial F_1}{\partial y}(\vec{a})\$ also causes rotation (counterclockwise if negative, clockwise if positive).

Curl of a Vector Field

The tendency of a vector field F
 = ⟨F₁, F₂, F₃⟩ to rotate objects counterclockwise around the z-axis is measured by the scalar quantity

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}.$$

• Correspondingly, rotation about the x- and y-axes are measured by the scalars $\partial F_{x} = \partial F_{x}$

$$\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}$$
 and $\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}$.

• Making these scalar functions into the components of a **vector** lets us measure the rotational effect of \vec{F} at all points.

Curl of a Vector Field

The **curl** of a vector field
$$\vec{F} = \langle F_1, F_2, F_3 \rangle$$
 is defined as
 $\operatorname{curl}(\vec{F}) = \left\langle \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right\rangle$

Notice that $curl(\vec{F})$ is a **vector-valued** function (that is, it is a vector field).

The **direction** of $\operatorname{curl}(\vec{F})(P)$ is the axis of rotation, as determined by the right-hand rule, and the **magnitude** of $\operatorname{curl}(\vec{F})(P)$ is the speed of rotation.

If $curl(\vec{F}) = \vec{0}$ then \vec{F} is called **irrotational**.

The Del Operator

The **del** or **nabla** operator¹ ∇ is defined by $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$.

Applying ∇ to a scalar function f gives its gradient:

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \right\rangle$$

The curl and divergence of a vector field can also be written in terms of ∇ :

$$\operatorname{div}(\vec{\mathsf{F}}) = \nabla \cdot \vec{\mathsf{F}} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle F_1, F_2, F_3 \right\rangle = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

$$\operatorname{curl}(\vec{\mathsf{F}}) = \nabla \times \vec{\mathsf{F}} = \left\langle \frac{\partial}{\partial x}, \ \frac{\partial}{\partial y}, \ \frac{\partial}{\partial z} \right\rangle \times \left\langle F_1, F_2, F_3 \right\rangle = \begin{vmatrix} \vec{\mathsf{i}} & \vec{\mathsf{j}} & \vec{\mathsf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

 $^{^{1}}$ An **operator** is like a function on functions — it transforms one function into another.

Calculating Divergence and Curl

Example 2: Calculate the divergence and curl of

$$\vec{\mathsf{F}}(x,y,z) = \langle xz, xyz, -y^2 \rangle$$

Solution:

$$\operatorname{div}(\vec{\mathsf{F}})(x, y, z) = \frac{\partial}{\partial x}(xz) + \frac{\partial}{\partial y}(xyz) + \frac{\partial}{\partial z}(-y^2) = z + xz$$
$$\operatorname{curl}(\vec{\mathsf{F}})(x, y, z) = \begin{vmatrix} \vec{\mathsf{i}} & \vec{\mathsf{j}} & \vec{\mathsf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz & xyz & -y^2 \end{vmatrix} = \langle -2y - xy, x, yz \rangle$$

Calculating Divergence and Curl

Example 3: Calculate $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ for the 2-dimensional vector field

$$\vec{\mathsf{F}}(x,y) = \langle y^2, x^2 \rangle.$$

Solution: This field turns out to be incompressible, because

$$(\nabla \cdot \vec{\mathsf{F}})(x,y) = \frac{\partial}{\partial x}(y^2) + \frac{\partial}{\partial y}(x^2) = 0.$$

Cross products are defined only in $\mathbb{R}^3.$ To calculate curl we must write

$$\vec{\mathsf{F}}(x,y) = \left\langle y^2, \ x^2, \ 0 \right\rangle$$

so that

$$(\nabla \times \vec{\mathsf{F}})(x,y) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & x^2 & 0 \end{vmatrix} = \langle 0, 0, 2x - 2y \rangle.$$

Fact: The curl of a 2-dimensional vector field is always parallel to \vec{k} .

3 Conservative Vector Fields and their Potential Functions

by Joseph Phillip Brennan Jila Niknejad

Conservative Vector Fields

Let f(x, y, z) be a scalar-valued function. Its gradient is a vector field:

$$\vec{\mathsf{F}} = \nabla f = \left\langle \frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \right\rangle$$

- The function f is called a (scalar) potential function for \vec{F} .
- A vector field is called conservative if it has a potential function,

Conservative fields occur naturally in physics, as force fields in which energy is conserved.

If $\vec{F} = \nabla f$ is a conservative vector field, then at all points *P* the vector $\vec{F}(P)$ is orthogonal to the level curve of the potential function *f*.

Facts about Potentials

A domain \mathcal{R} is called **connected** if any two points P, Q in \mathcal{R} can be connected by a path that lies in \mathcal{R} .

Theorem

If \vec{F} is conservative on an open connected domain \mathcal{R} , then any two potential functions of \vec{F} differ by a constant.

- This fact makes sense if you think of ∇ as differentiation and a potential function as an antiderivative.
- It is the higher-dimensional analogue of the statement that any two antiderivatives of a function $f : [a, b] \rightarrow \mathbb{R}$ differ by a constant.

Conservative Vector Fields Have Zero Curl

Theorem

If \vec{F} is a conservative vector field in \mathbb{R}^2 or \mathbb{R}^3 , then curl $(\vec{F}) = \vec{0}$.

That is, all conservative vector fields are irrotational.

Proof: Let f be a potential function for \vec{F} , that is, $\nabla f = \vec{F}$. Then,

$$url(\vec{F}) = curl(\nabla f) = \nabla \times \nabla f = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix}$$
$$= \langle f_{zy} - f_{yz}, \ f_{xz} - f_{zx}, \ f_{yx} - f_{xy} \rangle$$
$$= \vec{0} \qquad \text{by Clairant's Theorem}$$

Food For Thought: Are all irrotational fields necessarily conservative?

Finding Scalar Potentials

The process for finding scalar potential functions is essentially antidifferentiation, but with a twist.

For $\vec{\mathsf{F}}(x,y) = \langle F_1(x,y), F_2(x,y) \rangle$:

• Find the indefinite integrals $\int F_1(x, y) dx$ and $\int F_2(x, y) dy$.

• The constants of integration are $c_1(y)$ and $c_2(x)$ respectively (instead of the usual "+C"), because if $\frac{\partial}{\partial x}(f(x,y)) = F_1$ then $\frac{\partial}{\partial x}(f(x,y) + c_1(y)) = F_1$ as well.

² "Match up the pieces" to determine f(x, y).

For $\vec{\mathsf{F}}(x,y,z) = \langle \mathsf{F}_1(x,y,z), \mathsf{F}_2(x,y,z), \mathsf{F}_3(x,y,z) \rangle$:

- Find the indefinite integrals ∫ F₁ dx, ∫ F₂ dy, and ∫ F₃ dz. Constants of integration: c₁(y, z), c₂(x, z), c₃(x, y).
- ⁽²⁾ "Match up the pieces" to determine f(x, y, z).

Finding Scalar Potentials

Example 4: Find a scalar potential function for the vector field

$$\vec{\mathsf{F}}(x,y) = \left\langle 3 + 2xy, \ x^2 - 3y^2 \right\rangle.$$

Solution:

$$f(x,y) = \int 3 + 2xy \, dx \qquad f(x,y) = \int x^2 - 3y^2 \, dy$$

= $3x + x^2y + c_1(y) \qquad = x^2y - y^3 + c_2(x)$

Match up the pieces:

$$f(x, y) = x^2y + 3x - y^3 + C.$$

Finding Scalar Potentials (3-dimentional Example)

Example 5: Find a scalar potential function for the vector field

$$\vec{\mathsf{F}}(x,y,z) = \left\langle y^2 + e^z, \ 2xy + \sec^2(y), \ xe^z \right\rangle.$$

Solution: Antidifferentiate each of the component functions:

$$\int y^{2} + e^{z} dx = xy^{2} + xe^{z} + c_{1}(y, z) \left| \begin{array}{c} \int 2xy + \sec^{2}(y) dy = xy^{2} + \frac{\tan(y)}{c_{1}(y, z), c_{3}(x, y)} \\ = xy^{2} + \frac{\tan(y)}{c_{1}(y, z), c_{3}(x, y)} \end{array} \right| \left| \begin{array}{c} \int xe^{z} dz = xe^{z} + c_{3}(x, y) \\ = xe^{z} + c_{3}(x, y) \end{array} \right|$$

Match up the pieces to get the answer:

$$f(x, y, z) = xy^2 + xe^z + \tan(y) + C$$

Another Potential 3-Dimensional Example (Optional)

Example 6: Show that $r = \sqrt{x^2 + y^2 + z^2}$ is a potential function for the unit radial vector field

$$\vec{e_r} = \left\langle \frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right\rangle.$$

Solution:
$$\frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r}$$
 $\frac{\partial r}{\partial y} = \frac{y}{r}$ $\frac{\partial r}{\partial z} = \frac{z}{r}$

Radial, inverse-squared vector fields are conservative since

$$\nabla\left(\frac{-1}{r}\right) = \frac{\vec{e_r}}{r^2} \qquad \qquad \vec{\mathsf{F}}_{gravity} = \left(\frac{-\mathsf{G}m\mathsf{M}}{r^2}\right)\vec{e_r}$$

Gravitational force exerted by a point mass *m* on a point mass *M* is described by a radial, inverse-squared vector field. $\frac{GmM}{r}$ is a scalar potential for $\vec{F}_{gravity}$.